Framework for Assessing Cost-Effectiveness of Mercury Control Policies

Anne Smith
Brian Lonergan
John Rego
Charles River Associates
with
Chris Whipple
Environ International

NETL Valuing Externalities Workshop
McLean, VA
February 20-21, 2003

Introduction

- EPRI-funded project.
- Develop a "cost-effectiveness framework" for exploring utility sector Hg emissions controls.
 - Integrate information on the economic and environmental impacts of controlling Hg emissions.
 - Allow exploration of alternative Hg control options.
 - Work still in initial stages.
- In this presentation:
 - Synopsis of initial framework and its elements.
 - Preliminary application (Clear Skies Act).

Current Elements of Integrated Framework

Estimating the Electric System Responses to a Hg Control Scenario

EPMM Model for Multi-Pollutant Policy Simulation

- EPMM-- linear-program simulation of US electricity system
 - 32 regional electricity markets
 - Interconnected by limited transmission capacity
- Finds least-cost way to serve electricity demand & meet:
 - Emissions caps.
 - Transmission limits.
 - Reserve requirements.
 - Various other system and unit constraints.

Key Outputs of EPMM

- Numbers and combinations of control retrofits
- Capacity & its utilization
- Fuel consumption
 - Including coal choices by rank, sulfur, and Hg contents
- Wholesale electricity prices
- Emissions allowance prices
- Emissions of SO₂, NO_x, carbon, and total Hg
- Total System Generation Costs
 - Present value
 - Annual costs (including annual capital charges)

Estimating the Species of Hg Emitted

EPMM Outputs Are Combined with ICR-Based Relationships To Speciate Hg Emissions

- Numbers and combinations of control retrofits
- Capacity & its utilization
- Fuel consumption
 - Including coal choices by rank sulfur, and Hg contents
- Wholesale electricity prices
- Emissions allowance prices
- Emissions of SO₂, NO_x, carbon, and total Hg
- Total System Generation Costs
 - Present value
 - Annual costs (including annual capital charges)

Subsidiary Calculations for Speciating Emissions

Estimating Deposition Changes

"Transfer Coefficients" for Hg⁰ and Hg²⁺ by AER from Global Atmospheric Chemistry Model

Estimating Changes in Human Doses

What Does a Deposition Change Imply for Change in Hg Consumed?

- Currently unknown.
- Possibilities of concern:
 - That concentrations of MeHg in fish flesh come from nonatmospheric sources.
 - That concentrations of MeHg in fish flesh will take some period of time before they fully reflect impact of changes in Hg deposition.
- "Core" assumptions used in framework:
 - An x% change in regional deposition of Hg implies an x% change in concentrations in all wild freshwater fish flesh.
 - The full x% change appears instantly in fish being consumed.
 - This approach minimizes chances of understating the benefits for a given investment in utility Hg emissions reductions.

Human Hg Exposure: Estimating Relevant Portion of Fish Consumption

- Entire human MeHg concentration is attributable to fish meals.
- Change in human MeHg concentration due to policy scenario will be based on fraction of all fish meals that come from "relevant" fish.
 - U.S. Hg deposition changes do not measurably affect the MeHg content of saltwater or farmed fish.
 - Change in MeHg content in wild, freshwater fish is proportional to change in Hg deposition in that year.
 - 20% of catfish, trout, "other", and "unknown" freshwater fish meals are classified as wild freshwater fish.

Human Hg Exposure: Fish Consumption from NHANES data

	Weighted		
	Ave Number of fish meals	Percent of	
Fish Type	in the past 30 days	Fish meals	
All Fish	8.22	100.00%	
Freshwater, excluding other and unknown	0.997	12.13%	
Freshwater, including other and Unknown	2.6	31.63%	
Freshwater, excluding catfish, trout, other and unknown	0.129	1.57%	
Assumed 20% of Catfish, trout, other and unknown are WILD FRESHWATER FISH	0.6232	7.58%	

Estimating Changes in Risk

NHANES Data Used For Estimating Base Case MeHg Blood Levels

- Upper tail of cumulative distribution of blood MeHg levels for women of childbearing age estimated statistically.
- Entire distribution is shifted downwards by % change in relevant fish ingested.
- Population "at risk" are those with blood MeHg levels above the Reference Dose.
- Likelihood of being pregnant is assumed independent of position on the distribution.

Using the Estimated Population Distribution (Upper Tail) from NHANES

Illustrative Calculations: Hg Provisions of the Clear Skies Act of 2002

Evaluation of the Clear Skies Act (CSA)

- Base Case: CSA without its Hg controls
 - SO₂ cap of 4.5 million tons in 2010, 3 million tons in 2018
 - NO_x cap of 2.1 million tons in 2008, 1.7 million tons in 2018
- Scenario: CSA, including its Hg controls
 - Hg cap of 26 tons in 2010, 15 tons after 2018
 - Market based, cap-and-trade approach on national basis
- Still illustrative: estimates impacts on national average basis only.

- Base Case trend reducing Hg⁺² emissions.
- Addition of Hg caps to CSA has larger effect on Hg⁰. Of a total Hg reduction relative to Base Case,
 - 6 tons of ionic Hg emission reductions.
 - 18 tons of elemental Hg emission reductions

Hg Caps of CSA -Cost-Effectiveness Summary

Preliminary & Illustrative

Year	Annual Costs (\$m)	Deposition %Δ	% of Population > RfD	Inc. # Gestations < RfD
2008	\$279	1.0%	010%	463
2010	\$1,363	3.5%	034%	1,739
2015	\$1,243	3.3%	036%	1,788
2018	\$2,027	3.5%	034%	1,998
2020	\$2,979	2.9%	029%	1,716

Cost Spent per Incremental Gestation < RfD

Preliminary & Illustrative

Next Steps

- Add regional detail.
- More types of scenarios (e.g., unit-specific vs. trading).
- Additional types of impacts?
- Incorporate new information as it becomes available.
- Add probabilistic simulation.
- Discuss significance of cost-effectiveness findings.
 - Are there more meaningful ways to assess costeffectiveness?

Boston, Washington DC, Los Angeles, Philadelphia, Berkeley, Palo Alto, Salt Lake City, Austin, Houston London, Brussels, Toronto, Mexico City, Wellington, Brisbane, Melbourne